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Background. Short linear motifs (SLiMs) in proteins are functional microdomains of fundamental importance in many
biological systems. SLiMs typically consist of a 3 to 10 amino acid stretch of the primary protein sequence, of which as few as
two sites may be important for activity, making identification of novel SLiMs extremely difficult. In particular, it can be very
difficult to distinguish a randomly recurring ‘‘motif’’ from a truly over-represented one. Incorporating ambiguous amino acid
positions and/or variable-length wildcard spacers between defined residues further complicates the matter. Methodology/

Principal Findings. In this paper we present two algorithms. SLiMBuild identifies convergently evolved, short motifs in
a dataset of proteins. Motifs are built by combining dimers into longer patterns, retaining only those motifs occurring in
a sufficient number of unrelated proteins. Motifs with fixed amino acid positions are identified and then combined to
incorporate amino acid ambiguity and variable-length wildcard spacers. The algorithm is computationally efficient compared
to alternatives, particularly when datasets include homologous proteins, and provides great flexibility in the nature of motifs
returned. The SLiMChance algorithm estimates the probability of returned motifs arising by chance, correcting for the size and
composition of the dataset, and assigns a significance value to each motif. These algorithms are implemented in a software
package, SLiMFinder. SLiMFinder default settings identify known SLiMs with 100% specificity, and have a low false discovery
rate on random test data. Conclusions/Significance. The efficiency of SLiMBuild and low false discovery rate of SLiMChance
make SLiMFinder highly suited to high throughput motif discovery and individual high quality analyses alike. Examples of such
analyses on real biological data, and how SLiMFinder results can help direct future discoveries, are provided. SLiMFinder is
freely available for download under a GNU license from http://bioinformatics.ucd.ie/shields/software/slimfinder/.
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INTRODUCTION
Protein-protein interactions are of fundamental importance in

biology. Although many well-characterised interactions are

mediated by large domain-domain interfaces, it is estimated that

15%–40% of interactions may be mediated by a short, linear motif

(SLiM) in one of the binding partners [1,2]. Because of their short

and degenerate nature, new SLiMs are hard to identify and much

of what we know about them stems from a few well-characterised

examples (e.g. SH2-domain binding motifs [3]). The Eukaryotic

Linear Motif (ELM) database has annotated examples for over

sixty known motifs [4] and large-scale analyses of interaction

datasets suggest that there are hundreds yet to be discovered [5].

SLiM-mediated interactions are often transient, with quite low

affinity for their binding partners, and it has been suggested that

they exhibit considerable evolutionary plasticity [6]. Indeed,

existing methods for identifying new SLiMs [7,8] explicitly invoke

a model of convergent evolution to identify over-represented

sequence patterns. These methods, however, rely on an initial

motif discovery phase using generic pattern-finding TEIRESIAS

software [9], which returns all shared patterns regardless of

evolutionary relationships and with only crude length and

complexity control. As a result, a lot of post-processing of returned

motifs is required. Furthermore, TEIRESIAS offers only limited

ambiguity capabilities and no options for returning variable length

wildcard spacers, such as seen in the Cyclin recognition site

([RK].L.{0,1}[FYLIVMP]) [4]. Here we present SLiMBuild,

which is a novel algorithm explicitly designed to identify SLiMs

that are shared by unrelated proteins (as identified by BLAST

[10]). SLiMBuild constructs motifs by combining dimers into

longer patterns before efficiently incorporating amino acid

degeneracy and/or variable length wildcards by adding variants

that (a) occur in the desired number of unrelated proteins, and (b)

increase the total number of unrelated proteins in which the

ambiguous motif occurs.

Identifying recurring motifs is only part of the challenge.

Because of their relative simplicity, short motifs are expected to

occur in multiple unrelated proteins by chance. To account for

this, SLiM discovery tools attempt to attach a score that indicates

how unlikely a given motif is compared to other motifs in a dataset,

either through an explicit heuristic [8] or by an empirical estimate

[7]. The SLiMChance algorithm we present here improves on

these scores by making a crude but effective adjustment of motif

probabilities by considering the total number of motifs in the

motif-space considered by SLiMBuild. This allows the attachment
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of a significance value to returned motifs, which returns known

motifs with a very high specificity from benchmark datasets of

known eukaryotic motifs.

Both SLiMBuild and SLiMChance are implemented in

a combined software package called SLiMFinder, which is freely

available for academic use. SLiMFinder implements a number of

input and output options that are described elsewhere (see http://

bioinformatics.ucd.ie/shields/software/slimfinder/).

METHODS
The term ‘‘motif’’ can be used in a number of different contexts

with different meanings. In this paper, we use motif to mean

a short, linear motif (SLiM) in a protein. In biology, SLiMs are

functional microdomains with three main properties:

1. Short–generally less than 10aa long with five or less defined

residues.

2. Linear–comprised of adjacent amino acids in a protein’s

primary sequence. While three-dimensional conformation

may be important for function, it is not necessary for

definition.

3. Motif–a defined sequence pattern, which is necessary for

function, recurs in the relevant proteins.

For simplicity, we use ‘‘SLiM’’ in this paper to describe a true

functional motif with these properties, and ‘‘motif’’ to describe

SLiM-like sequence patterns that may be functional or may simply

be chance occurrences. SLiMs comprise of a number of defined

amino acid positions, often separated by a number of wildcards,

which may be any amino acid (Figure S1). Defined positions may be

fixed, in which case only one species of amino acid is permitted at

that position, or ambiguous, in which case multiple different amino

acids may occupy that site and still result in a functional SLiM.

Overview of SLiMFinder algorithms
SLiMFinder is explicitly designed to look for shared motifs in regions

of interest of unrelated proteins. To this end, evolutionary relation-

ships must first be established using BLAST, before the main

SLiMBuild Algorithm identifies shared motifs between unrelated

proteins, masking out unwanted residues as required (Figure 1). The

SLiMChance algorithm then assesses the motifs for statistically

unlikely over-representation and significant motifs (putative SLiMs)

are output (Figure 1). SLiMFinder recognises a number of input

formats, although UniProt or Fasta format are recommended. Batch

running of multiple datasets is also fully supported.

Establishment of Evolutionary Relationships
SLiMFinder finds motifs that are shared by different ‘‘Unrelated

Protein Clusters’’ (UPCs). Each UPC is a group of proteins that

are not related to any proteins in the dataset outside of their own

UPC. BLAST [10] is first used to identify which proteins are

related to which other proteins. Each protein is grouped with all its

BLAST hits and then iteratively grouped with their BLAST hits

until no more sequences are added to the UPC. Each UPC

therefore has the following characteristics:

1. Every protein in a UPC has a BLAST-detectable relationship

with at least one other member of the UPC.

2. Every protein in a UPC can be linked to every other protein

in the UPC via BLAST-detectable relationships, though

sometimes this must go through one or more intermediate

proteins.

3. None of the proteins within a UPC has a BLAST-detectable

relationship with any of the proteins in another UPC.

By default, a BLAST e-value of 1024 is used and the complexity

filter is on. These parameters may be changed by the user.

Input sequence masking
SLiMFinder offers a number of input masking options, which can

be useful for restricting analyses to particular parts of the proteins

in the dataset. These include IUPRED [11] disorder prediction,

UniProt features and low complexity regions. SLiMFinder

masking is performed after UPC definition and therefore masking

will not affect the UP relationships between sequences. Full details

of the masking options are available at the SLiMFinder website.

Figure 1. Overview of SLiMFinder. An input dataset is first clustered into unrelated protein clusters (UPC) using a treatment of BLAST results to
identify evolutionary relationships. The dataset is also masked according to user choices, masking out predicted ordered regions, selected UniProt
features, low complexity regions and/or N-terminal methionines. This (masked) dataset is then processed by the SLiMBuild algorithm to identify
motifs that are shared by unrelated proteins. A TEIRESIAS-style output of all motifs can be produced at this point. Amino acid frequencies are
calculated for each cluster of unrelated proteins, either before or after masking, and may be retained as cluster-specific frequencies or averaged over
all clusters. Alternatively, amino acid frequencies may be given from an external source. These frequencies are combined with data from SLiMBuild on
the motif composition of the dataset and processed by the SLiMChance algorithm, which identifies significantly over-represented motifs. These
motifs and additional dataset information are then output into results files.
doi:10.1371/journal.pone.0000967.g001
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SLiMBuild Construction of Motifs
SLiMBuild uses five basic sets of parameters for generating motifs

from the dataset:

1. w, the maximum number of wildcard positions allowed

between any adjacent pair of defined positions.

2. The maximum number of defined positions. (Sometimes

referred to as the ‘‘length’’ of the motif, although the ‘‘true

length’’ of a SLiM would include both defined and wildcard

positions.)

3. s, the minimum support for the motif, i.e. the number of

unrelated proteins that motif occurs in.

4. Ambiguity options, including an equivalency file of allowed

ambiguities.

5. An optional minimum variant support, v, used in extending

ambiguity.

Motifs are constructed by first identifying all possible ‘‘i-x-j

dimers’’, which consist of two amino acids i and j separated by x

wildcards, up to the maximum allowed value, w (Figure 2A).

Motifs are then extended by joining appropriate dimers together

(Figure 2B). Finally, SLiMBuild incorporates ambiguity into the

motifs (Figure 3).

SLiMBuild dimer construction
Dimers are constructed simply by taking each position i of each

protein in turn to define the first amino acid, ai. Each wildcard

length x from 0 to W, where W is the maximum wildcard length is

then taken in turn and used to define the second amino acid in the

dimer, aj where j = i+x. If ai or aj are masked (an ‘X’) then that

dimer is rejected, else the dimer is added to the stored list, along

with information on the protein and position i of its occurrence

(Figure 2A). Symbols representing N- and C-termini (^ and $) are

added to each sequence prior to dimer construction and thereon

considered as additional amino acids. After all dimers have been

found in all sequences, any with a support below the minimum

support threshold are removed. (For a motif to exceed a given

support, each of its component dimers must also exceed that

support.)

Figure 2. SLiMBuild construction of motifs. A. Dimer construction. For
each position in a sequence, each possible wildcard length x is used to
find possible ‘‘i-x-j’’ dimers. Dimers containing masked (‘‘X’’) residues are
ignored (greyed dimers). Note that the n-terminal ‘‘^’’ marker is treated
as any other amino acid. B. Motif extension. Longer SLiMs are
constructed during the SLiMBuild process by matching the occurrences
of shorter SLiMs with the relevant i-x-j dimers. At each stage, only SLiMs
with sufficient unrelated protein support are retained, making the
algorithm very efficient.
doi:10.1371/journal.pone.0000967.g002

Figure 3. SLiMBuild Ambiguity. A. Wildcard ambiguity. Ambiguity is added in a multi-stage process. First, the motif is broken up into its component
parts, consisting of alternate defined and wildcard positions. These are then replaced by the appropriate equivalency group, which in the case of
wildcards is the full range of wildcard lengths from 0 up to the maximum length allowed. These equivalencies are then expanded to all possible
variants. Any variants that do not themselves meet the minimum support requirement used previously for motif extension are not considered (shown
in grey). Variants are only combined when the UPC support for the ambiguous motif is greater than for the individual variants. Variants that would
not increase the UPC support of the original motif are therefore also removed (shown in red). The remaining variants are ranked (see text) and the
best variant combined with the original motif (blue). The remaining variants are re-assessed for increasing UPC support and any failing to do so are
again removed. If any remain, the ranking and combining cycle repeats. If not, the finished degenerate motif is returned. B. Amino acid ambiguities.
These are handled in the same way as wildcard ambiguities, except that this time equivalencies are defined by the given equivalency list. If a given
amino acid belongs to multiple equivalency groups, such as serine ([AGS] and [ST]) then all possible combinations of these equivalency groups (four
in this case) are considered separately, thus multiple ambiguous SLiMs can potentially be produced. (Expansion of these combinations has been
truncated in the figure.)
doi:10.1371/journal.pone.0000967.g003
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SLiMBuild motif extension
Motifs are extended by concatenating i-x-j dimers (Figure 2B). For

each dimer aix1aj all azx2ak dimers are examined, where az = aj

(k = z+x2, az and ak are amino acids at positions z and k). Where the

two dimers have occurrences in the same protein and z = j, the two

dimers are compiled to make a single aix1ajx2ak trimer. If this

trimer occurs in s or more unrelated sequences, it is retained and

extended in the same way to make 4mers. This continues until the

maximum motif length is reached (length 5 by default) or until

there are no more motifs with the desired support to extend.

SLiMBuild ambiguity
SLiMBuild considers two types of ambiguity: amino acid degeneracy

at a given position, and flexible length wildcard ‘‘gaps’’. A similar

logic is applied in considering both these forms of ambiguity by

carefully combining appropriate motifs generated during SLiMBuild

extension. Each fixed motif is considered in turn as a seed for adding

ambiguity in terms of degenerate non-wildcard positions and/or

flexible wildcard lengths (Figure 3). Ambiguity is considered in three

phases: wildcards only, amino acids only and combined wildcard

and amino acid degeneracy. (Combined ambiguity can be

computationally intensive and is switched off by default.)

In each case, the motif being considered is broken down into

individual elements, consisting of alternate amino acids and/or

wildcard lengths. Each element is then replaced by its ‘‘equiv-

alencies’’. For wildcards, this consists of single wildcard equiva-

lency ‘‘01..W’’, where W is the maximum wildcard length allowed;

e.g. for the default maximum wildcard length of 2, the wildcard

equivalencies are 0, 1 and 2, and a variable length gap of 1 or 2 is

represented by the equivalency [12]. (Figure 3A). For amino acid

positions, SLiMFinder makes use of an ‘‘Equivalency list’’ for

ambiguity in a similar way to TEIRESIAS, although the actual

application of this file is quite different. This equivalency list

contains a number of amino acid groups that may be substituted in

degenerate positions; e.g. KR would allow for [KR] degeneracy,

while FYW, would facilitate [FY], [YW], [FW] and [FYW]. A

single amino acid can have multiple equivalency groups, which are

analysed separately. E.g. AGS,ST would permit serine [AS], [GS],

[AGS] and [ST], but not [AGST]. Where multiple equivalency

groups exist for one or more amino acids in a SLiM, all possible

combinations of equivalency group are considered (Figure 3B).

The idea of ambiguity is to try to increase the coverage within

a dataset for a given motif. This is achieved by adding ambiguity

that increases support (no. of unrelated proteins) for the motif.

Thus, returned motifs need to have been initially seeded by a non-

ambiguous motif (with lower support) before it is extended to

consider ambiguity. For each ambiguity combination, all possible

variants (excluding the original motif) are then considered. E.g.

[KR]-0-[ST]-1-P yields variant motifs K0S1P, R0S1P, K0T1P

and R0T1P, the second of which is ignored as it is the original

motif. Any variants that do not meet the minimum support

requirement are also rejected. Remaining variants are then ranked

according to the following criteria:

1. Number of ‘‘new’’ UP clusters. (The number of UPCs in

which the variant is found but the original motif is not.) If the

variant provides no new UPCs then it is rejected.

2. Total (UPC) support for the variant, if tied for 1.

3. Total number of occurrences for the variant (in different

sequences, regardless of homology relationships), if tied for

1&2.

4. If tied for 1–3, the variant that is most unlikely, given the amino

acid frequencies of the whole dataset, is ranked higher.

The top-ranked variant is retained and its UPCs added to those

of the original motif. The ranking is then repeated using this new

UP support, i.e. further variants are not added if their ‘‘extra’’

support has already been provided by previous variants. This

continues until all variants have been retained, or rejected

(Figure 3). Finally, retained variants are combined to make an

ambiguous motif. E.g. if R0T1P had been retained then it would

be combined with the original R0S1P SLiM to make R0[ST]1P

(R[ST].P). In the case of flexible wildcards, the minimum and

maximum length variants retained are used. i.e. R0S1P+
R2S1P = R[02]S1P (R.{0,2}S.P). Note that because different

equivalency combinations are examined separately, one SLiM

may spawn several ambiguous motifs (e.g. R[ST].P and R[AGS].P)

but only one ambiguity will be produced per equivalency group

(i.e. R[AS].P and R[AGS].P will not both be produced using

a single AGS equivalency group). Note also that each variant must

itself meet the minimum (UPC) support criteria, so only recurring

variants are combined.

SLiMChance motif probability estimation
The SLiMChance algorithm attaches a significance value to motifs

returned by SLiMBuild by first calculating the probability of

seeing that specific motif in at least as many unrelated proteins as

observed, and then adjusting this probability to take into

consideration the total motif space searched by SLiMBuild.

SLiMChance probabilities per UPC
SLiMChance first calculates the probability of seeing each motif in

each UPC, given its amino acid composition and i-x-j dimer

frequencies. This probability is calculated using the binomial

distribution and the expectation of the motif occurring at each site

in the UPC, which is a simple calculation based on the frequency

of each amino acid (fa), and the total number of positions that

a motif can occur (Nm). By default, amino acid frequencies are

calculated from the dataset, individually for each UPC, before any

masking takes place. Additional options allow amino acid

frequencies to be adjusted for masking, averaged over all UPCs,

or read from a file.

For each defined position in a motif with d alternative

(degenerate) amino acids, the probability of occurrence at any

residue in the dataset (pi) is the sum of the frequencies for the

possible amino acids at that position:

pi~
Xd

a~1

fa

The probability pm of the whole motif starting at any residue is

therefore the product of pi over all L positions in a motif:

pm~P
L

i~1
pi

(Wildcard positions do not contribute to this value, as the

probability of matching a wildcard is 1.0.). This defines the

probability for each ‘‘Bernoulli trial’’ in the binomial distribution.

What remains is to define appropriately the number of trials for

the motif in the UPC. There are two features of the UPC that

complicate estimation (for the probability calculation) of the

number of positions that a motif might arise at: firstly, some but

not all regions of the UPC proteins are related by evolution, and

secondly, the particular pattern of masking may alter the number

of positions available for motifs with a particular distribution of

non-wildcard positions.
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Because the proteins within a UPC are evolutionarily related,

they do not contribute to the motif space searched by SLiMFinder

in the same way as unrelated proteins, for which the motifs found

would be independent. However, unless all the sequences are

100% identical, there are still more independent positions at which

a given motif could occur than in any of the individual sequences

within the UPC. The UPC must therefore be rescaled to represent

its true contribution to the dataset. This is performed using the

‘‘Minimum Spanning Tree’’ (MST) correction used by SLiMDisc

[8] to correct for evolutionary relationships. This MST value

varies from 1 to N, where N is the number of proteins in the UPC.

If all proteins are 100% identical the MST value is equal to 1 (and

the UPC is exactly equivalent to a single sequence). As the proteins

become more dissimilar, MST tends towards N (see SLiMDisc [8]

for more details). This is converted into an ‘‘MST correction’’, M, for

the UPC by dividing the MST value by N. The total size of the UPC

is therefore adjusted by multiplying Naa (the total number of

unmasked residues in the UPC) by M. (This is equivalent to the mean

number of amino acids per sequence in the UPC, multiplied by the

MST-corrected size of the UPC.) SLiMFinder uses the largest

GABLAM [8] ordered percentage identity between each pair of

sequences to generate the distance matrix for MST calculations.

The distribution of masking influences the potential number of

sites at which a motif can occur. For a dimer motif with a given

wildcard length x, SLiMChance directly observes the frequency of

positions in the dataset that could accommodate a dimer motif of

that wildcard length. Then, for longer motifs, it estimates the

frequency of potential sites as the product of the fraction of dimer

sites for all the dimers that constitute the motif. This has the

numerical advantage that the frequencies of dimer types are

previously available from the SLiMBuild computation. The number

of trials is then estimated as the possible number of positions at which

the motif could start (Nm). Nm is calculated empirically from the

dataset. During dimer generation, the number of i-x-j dimers

(Figure 2), Nixj, is counted for each wildcard length x (where neither i

nor j are masked). This is converted into the fraction of unmasked

residues that start with a dimer of wildcard-length x, Dx, calculated as

a proportion of the unmasked positions (Naa) in the UPC.

Dx~
Nixj

Naa

Nm, the number of positions at which a motif may potentially occur is

then calculated from the product of the motif’s component dimer

frequencies and the MST-adjusted number of unmasked residues in

the UPC:

Nm~NaaM P
L{1

w~1
Dxw

where M is the MST correction for that UPC, L is the length (no. of

positions) of the motif and Dxw is the dimer frequency for that

wildcard length x at wildcard position w. (For flexible-length

wildcards, this is the mean dimer frequency of the length variants

at w.)

If there are wildcard length variants, each length variant has

a chance of occurring and so this effectively increases the number

of possible motif positions via a simple multiplication, where xj is

the number of wildcard variants at wildcard position j:

Nm~NaaM P
L{1

w~1
Dxw P

L{1

j~1
xj

It could be argued that this multiplier should apply to the

probability of the motif at each position, rather than the number of

motif positions. (In reality, each motif ‘‘position’’ is a starting

residue. Obviously, there cannot be more starting residues than

the length of the sequence, whereas this multiplication implies that

there can be.) The reason for applying the correction to Nm,

however, is that this value has no upper bound for the binomial

calculation. The probability pm, in contrast, must be #1.0, whereas

the multiplier for numerous variable-length wildcards could cause

it to exceed 1.0.

The probability of 1+ occurrences of the motif in the UPC is

calculated using the binomial:

p1z~1{(1{pm)Nm

SLiMChance probabilities per dataset
The individual p1+ values are then used to calculate the motif

probability for the entire dataset, p, where NU is the number of

UPCs in the dataset and KU is the number of UPC containing the

motif. Again, this is calculated using the binomial, where pu is the

mean p1+ value for each UPC:

pu~

PNU

u~1

p1z

NU

p~1{
X

kvKU

NU !

k!(NU{k)!
:pk

u :(1{pu)NU k

SLiMChance significance values
The probability calculated above is the estimated probability of

seeing a given motif with its observed support (or greater) given the

dataset. However, the calculations implicitly assume that the motif

was defined before anything was known about the dataset. In

reality, SLiMFinder is looking for all possible motifs and only

actually returning those at the ‘‘top end of the distribution’’, i.e. the

over-represented motifs. In reality, each motif in the ‘‘motif space’’

searched has a chance of being stochastically over-represented, so

it is important to adjust for this and establish a significance value

for each motif.

The a priori probability of each motif in motif space being over-

represented with a probability p is itself (perhaps obviously) p.

Because SLiMBuild generates motifs using a maximum wildcard

spacer length, X, it is possible to calculate exactly the size of the

motif space, BL, for each length of motif L:

BL~20L(Xz1)L{1

The significance of a motif (Sig) with occurrence probability p can

therefore be calculated using the binomial distribution as the

probability of getting one or more successes given BL trials of

probability p.

Sig~1{(1{p)BL

Sig ranges from zero to one and can be thought of as a true p-value.

Because different lengths of motifs are not independent of each
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other, Sig is calculated independently for each number of defined

positions. The motif space calculation only calculates the number

of fixed-position motifs in the search space. Allowing ambiguities

obviously increases the size of the search space and very relaxed

ambiguous searches may need to use a more stringent p-value

accordingly.

SLiMFinder Output
The main output for SLiMFinder is a delimited text file containing

the list of motifs that meet the user-specified threshold for

corrected significance (Sig). These are ranked according to their

significance. Each line also contains a number of dataset-specific

fields, allowing multiple datasets to be run and analysed together.

Additional outputs that assist the visualisation and interpretation of

interesting results are explained in detail in the SLiMFinder

manual, available at the website. Other options include a TEIR-

ESIAS-style output of all motifs generated by SLiMBuild, allowing

SLiMFinder to be used as a direct replacement for TEIRESIAS

for other SLiM discovery tools.

Systems
All SLiMFinder runs were performed on an Intel(R) Xeon(TM)

dual 3.20GHz processor with 3Gb RAM. SLiMFinder and its

constituent algorithms were run using Python 2.4.3.

Disorder prediction
For analyses presented in this paper, IUPRED [11] was used to

predict intrinsically unordered regions, using the ‘‘short’’ setting

and a threshold of 0.2.

Human genomic protein dataset
The EnsEMBL [12] human genome V.41 known and novel

protein sequences were downloaded and used to generate

a comprehensive, non-redundant sequence dataset containing

one protein per gene. If a gene mapped to a SwissProt [13]

sequence, and one of the peptides mapped to that gene had an

identical sequence to the SwissProt entry then that peptide was

used; in all other cases, the longest peptide was used. Sequences

themselves were taken directly from the EnsEMBL. In total, this

dataset consisted of 23,224 protein sequences, including 14,694

that mapped onto SwissProt entries.

Random test data
To test SLiMFinder function on a range of random data with

different levels of realism, three types of random data were

generated: (1) Randomly generated sequences using uniform

amino acid frequencies; (2) Randomly generated sequences using

amino acid frequencies from the Human genomic protein dataset;

(3) Randomly selected proteins from the Human genomic protein

dataset. The mean length of a protein sequence in the human

protein dataset was 487.4 amino acids. Random sequences were

therefore generated from a random length distribution ranging

from 200 to 800 amino acids, with a mean length of 500 amino

acids. For each type of random data, ten replicates of each of

twenty-five datasets sizes were generated: 3, 4, 5, 6, 7, 8, 9, 10, 12, 14,

16, 18, 21, 24, 27, 30, 35, 40, 45, 50, 60, 70, 80, 90 and 100 proteins.

This produced 250 datasets for each type of random data.

ELM benchmarking datasets
The best resource for biologically validated SLiMs is currently the

Eukaryotic Linear Motif (ELM) database [4], which contains

information for over a hundred known motifs, including example

occurrences for many. (Other resources, such a Minimotif Miner

[14], contain more motifs but have considerably less annotation.)

ELM data has been used as a benchmark for previous SLiM

discovery software [5,8]. The benchmark dataset consisted of

seventeen ELMs for which there were at least three annotated

occurrences in unrelated proteins (Table 1). Each ELM dataset

consisted of all the proteins with annotated occurrences from the

ELM website (Jan 2007). At first glance, this seems like an ‘‘easy’’

test set, as every protein in the dataset contains the known motif.

In reality, however, the motifs are often degenerate and different

proteins will contain different variants, and so the re-discovery of

the known motifs is far from a foregone conclusion [5,8]. As ELM

represents the most comprehensive resource of validated SLiM

occurrences available, it is still the best benchmarking dataset for

SLiM discovery validation.

RESULTS

SLiMFinder performance on random data
Before considering the performance of SLiMFinder on datasets of

real biological interest, it is useful to assess its performance on

random datasets. We looked at the most significant motif returned

by each of 750 random datasets. The false positive rates for

SLiMFinder are very similar, at any given significance threshold,

for each type of random data (Figure 4A). Moreover, random data

matches the calculated expectation quite closely, with approxi-

mately 10% of datasets yielding a significance of 0.1 or lower and

1% of datasets yielding a significance of 0.01 or lower. Although

this relationship begins to deviate as the p-value increases, this is

not of concern as these deviations occur within the non-significant

portion of the data and will therefore not impact on results.

Differences between different types of random data are minimal.

Underlying complexities in amino acid distributions for real

protein sequences, therefore, do not seem to strongly violate the

underlying assumptions of the model.

It is also of interest to ask how the program scales with dataset

size in terms of the results returned. SLiMDisc [8], for example,

scales very poorly with dataset size: the number of motifs

returned–and the scores of returned motifs–increases substantially.

Although SLiMFinder shows some bias, the significance of the

most significant motif returned from each dataset is not strongly

dependent on dataset size (Figure 4B).

SLiMFinder performance on ELM benchmark data
Seven of the seventeen ELM datasets yield significant motifs

(p,0.05) that are variants of the true ELM (Table 1). This is not

simply a reflection of how over-represented the true ELM is in the

dataset, however. For the top three results, the true ELM is indeed

‘‘significant’’ but the remaining four ELMs that are found are not,

as defined by ELM, particularly over-represented (data not

shown). Instead, variants of the motif are discovered that are

over-represented. These do not match the ELM exactly but the

same is also true for the existing alternative SLiM discovery

methods, SLiMDisc [8] and DILIMOT [7]. The SLiMChance

score can therefore be seen as a complementary method to those

previously implemented; it successfully returns motifs that the

earlier methods did not, while failing to successfully identify several

motifs as significant that SLiMDisc and/or DILIMOT returned.

Indeed, even when SLiMFinder succeeds for the same datasets as

DILIMOT and/or SLiMDisc, it generally returns a different motif

variant: only two of the SLiMDisc/DILIMOT motifs would be

classed as ‘‘significant’’ by SLiMChance (data not shown).

SLiMFinder motifs tend to be longer and include more defined

positions of the known ELM than motifs returned by either
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SLiMDisc or DILIMOT (Table 1). None of the seventeen datasets

returned significant motifs that were not variants of the true ELM,

supporting the evidence from random datasets that the SLiM-

Chance significance exhibits high specificity.

So why did SLiMFinder fail for these additional ten motifs?

Several of the datasets are quite small and yet the ELM itself is

quite degenerate. The signal present in the dataset might therefore

simply be too weak to detect regardless of the method. For four

ELMs (LIG_14-3-3_3, LIG_NRBOX, MOD_N-GLC_2 and

TRG_LysEnd_APsAcLL_1), none of the SLiM discovery methods

returned a variant of the ELM as the top ranked result. For three

others (LIG_14-3-3_1, LIG_HP1_1 and LIG_RGD) SLiMDisc

returned the motif as the top rank but DILIMOT did not.

Together, these account for 70% of failures. Importantly, pre-

processing of the dataset can also impact on results. While it has

been observed that SLiMs tend to occur in disordered regions [4,6],

masking UniProt ‘‘Domain’’ features and predicted disordered

regions may mask out some true motifs. This certainly seems to be

Table 1. ELM benchmarking results sorted by significance of returned motifs.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELM Na SLiMFinderb Sigb SLiMDiscc DILIMOTc

TRG_ER_KDEL_1 [KRH][DENQ]EL 12 (10) K.{0,2}DEL$ (1) 0.000 KDEL (1) DEL (1)

LIG_Dynein_DLC8_1 [KR].TQT 4 (4) S..K.TQT (1) 3.961026 S..K.TQT (1) TQT (1)

LIG_PCNA Q..[ILM]..[FHM][FHM] 13 (9) [IL].S[FH]F (1) 4.361026 Q..L..F (36) Q.....FF (1)

MOD_SUMO [VILAFP]K.[EDNGP] 29 (19) [FIV]K.E (1) 2.061025 IK.E (2) IKQE (1)

LIG_SH3_2 P..P.[KR] 9 (8) P..P.R.{0,1}P (1) 0.004 PP.P (1) PP..P.R (1)

LIG_CYCLIN_1 [RK].L.{0–1}[FYLIVMP] 22 (15) RR.{0,1}L.{0,1}F (1) 0.005 KKL (7) -

LIG_CtBP P.[DEN]L[VAST] 26 (12) P[ILM]DL (1) 0.016 P.DL (1) P.DLS (1)

LIG_AP_GAE_1 [DE][DES].[F].[DE][LVIMFD] 8 (5) D.F..F.S..P (1) 0.40 D.F.DF.S (1) F.DF.S (1)

LIG_14-3-3_3 [RHK][STALV].[ST].[PEDSIF] 6 (6) S.P.S.T.P (3) 0.89 S.S.P (5) S.SVS (2)

LIG_RB [LI].C.[DE] 25 (23) L.C.E (6) 0.91 L.C.E (1) L.C.E (1)

LIG_Clathr_ClatBox_1 L[ILM].[ILMF][DE] 15 (9) L.{1,2}DL.{0,2}D (12) 0.93 L.DL (1) L.DL (1)

LIG_14-3-3_1 R[FSWY].S.P 4 (3) RS.S.P (3) 1.00 RS.S.P (1) R.R..S (4)

LIG_RGD RGD 15 (7) R.D.V (7) 1.00 RGD (1) -

LIG_HP1_1 P.V.[LM] 6 (5) - - P.V.L (1) P.V.L (4)

LIG_NRBOX L..LL 9 (9) - - L..LL (10) -

MOD_N-GLC_2 N.C 5 (4) - - - -

TRG_LysEnd_APsAcLL_1 [DER]...L[LVI] 10 (9) - - E…LL (27) D.R.L (7)

aNumber of proteins in dataset. Number of UPC is given in brackets.
bThe most significant motif returned by SLiMFinder that matched the ELM, with its significance score. The rank of the motif is given in brackets. No pattern indicates

that the top 100 motifs did not match the ELM.
cThe top-ranked motif returned by SLiMDisc or DILIMOT (default parameters; predicted globular domains masked out) that match the ELM. The rank is given in brackets.
doi:10.1371/journal.pone.0000967.t001..
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Figure 4. SLiMFinder results on random datasets. A. Cumulative frequency of the most significant motifs returned by SLiMFinder for random
datasets. Very little difference is observed between datasets produced using human amino acid frequencies and datasets of actual human protein
sequences, implying that there is little or no bias introduced by regional compositional biases within real protein sequences. B. Box plots of most
significant results returned by all random datasets for different dataset sizes (UPC). Although there is a slight trend for larger datasets to return
smaller p-values, the difference is primarily restricted to the non-significant motifs. Variation between datasets of the same size is considerably
greater than variation between different sized datasets.
doi:10.1371/journal.pone.0000967.g004
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the case for LIG_RB. When disorder masking is switched off,

LIG_RB returns the true ELM variant L.C.E as the most

significant result, with a significance of 1.6610210 (data not

shown). This highlights the need for considering carefully how to

mask sequences (or not) prior to searching. In some situations, it

will make sense to carry out searches both with and without

masking. The remaining motifs are probably missed because their

amino acid composition makes them highly likely to occur by

chance (e.g. LIG_Clathr_ClatBox_1 is leucine-rich (the most

common amino acid) and has a high degree of degeneracy) or

the dataset is too small to achieve a likelihood value that survives

the correction for motif space (e.g. LIG_14-3-3_1 is a ‘‘strong’’

motif but, with only three UPC in the dataset, there is simply not

enough statistical power for it to be detected). In contrast,

SLiMDisc is able to return these motifs as it does not depend on

over-representation versus random expectation but instead relies

solely on over-representation versus other motifs in the dataset.

SLiMFinder therefore complements the capabilities of SLiMDisc,

which remains useful for smaller datasets.

Improved SLiMBuild amino acid ambiguity
One of the major improvements of SLiMFinder over SLiMDisc

and DILIMOT is the way that amino acid ambiguity is

incorporated. DILIMOT does not make use of ambiguity at all.

SLiMDisc does have the option for including ambiguity but

caution is advised, as it tends to increase substantially the return of

false positives without much improvement in the motifs returned

[8]. Ambiguity in SLiMFinder, however, does not introduce any

false positives for the ELM benchmark dataset. Furthermore, the

sensitivity of searches is increased by incorporating ambiguity. Of

the seven ELMs yielding significant motifs, two fail to return

significantly over-represented motifs without amino acid ambigu-

ity.

This is exemplified by the LIG_PCNA motif, which returns 13

ambiguous variations of the defined ELM (data not shown), the

third of which (Q..[IL].SFF) covers all defined positions of the

ELM. Another feature of SLiMFinder is that it attempts to reduce

the complexity of the output by grouping motifs into ‘‘clouds’’.

These clouds are generated in a pairwise fashion; each pair of

motifs is considered in turn and if they share at least two defined

positions in at least two occurrences (i.e. the same residue in the

same protein), they are put together in the same cloud. Because

‘‘true’’ motifs are often short and/or degenerate, SLiMFinder will

generally return a variant of the motif, often with additional

defined residues (Table 1). This is presumably because the over-

represented ‘‘core’’ of the motif increases the likelihood of an

extended pattern (that includes the core) also appearing to be over-

represented: this may be just chance, or may reflect additional

genuine but weaker sequence features around the motif. By

grouping motifs together in this way, the user can achieve a better

sense of which residues in the motif are most important.

Flexible wildcards
One of the innovations of SLiMBuild over TEIRESIAS [9], which

is used to generate motifs for both SLiMDisc and DILIMOT, is

its ability to return motifs with flexible-length wildcards. Although

only a limited number of known ELMs have annotated flexible-

length wildcards, their incorporation can increase the accuracy

of discovery. The cyclin ligand motif LIG_CYCLIN_1

([RK].L.{0,1}[FYLIVMP]), for example, is returned very well

by SLiMFinder (RR.{0,1}L.{0,1}F) while SLiMDisc (KKL) and

DILIMOT (None) struggle to return an accurate descriptor

(Table 1).

Combined ambiguity
In principle, SLiMFinder can return motifs with combined amino

acid and wildcard ambiguities. In practice, however, this creates

very long runtimes with little or no improvement in results, and is

not recommended. (By default, SLiMFinder will return motifs with

flexible wildcards and motifs with amino acid ambiguities but not

motifs with both together.) For the ELM test dataset, no motif

definitions were improved by combining both ambiguities during

the SLiMBuild generation of motifs (data not shown). However, it

is plausible that motif definitions may be improved by manually

combining several motifs with different ambiguities from the same

‘‘motif cloud’’.

Additional of sequence termini characters
The additional of sequence termini characters (^ for the N-

terminal and $ for the C-terminal) is a simple improvement that

can help identify terminal motifs, such as the TRG_ER_KDEL_1

Golgi-to-ER retrieving signal. Although the KDEL motif alone is

found as highly significant by SLiMChance (1.2961024; data not

shown), the addition of the C-terminus symbol increases the

significance by over twenty orders of magnitude. It is envisaged

that for more borderline terminal motifs, the extra significance

given by the proximity to the termini could be vital in identifying

such motifs.

SLiMBuild versus TEIRESIAS runtimes
The primary motivation behind SLiMFinder was to improve the

results of ab initio SLiM discovery by generating better motif

descriptors and attaching a significance value to results. It is

important, however, that these improvements in performance are

not achieved at the cost of realistic runtimes. The best predictor of

runtimes for random datasets was the number of amino acids in

the dataset (data not shown). Although SLiMFinder runtimes do

appear to increase exponentially with increasing dataset size, the

slope of the curve is very shallow and none of the test datasets took

more than an hour to run on a single 3.2GHz processor (Figure

S2A). Indeed, all 750 test datasets could be run on a single

machine in under 86 hours, making SLiMFinder very feasible for

large scale analyses. In addition, the explicit treatment of the

dataset to return convergently evolved motifs maintains manage-

able run-times as the degree of relatedness of the input dataset

increases (Figure S2B). TEIRESIAS runtimes, in contrast, increase

as the number of related proteins increases. This problem is

magnified by use of ambiguity, in which case even small datasets

can take several hours to run with TEIRESIAS. For an arbitrary

dataset of twelve unrelated proteins that interact with AAA-

domain proteins, for example, adding the default SLiMBuild

equivalencies (AGS, ILMVF, FYW, FYH, KRH and DE)

increased the runtime of TEIRESIAS by more than three orders

of magnitude from 30 seconds to over 13 hours. For the same

equivalency groups on the same dataset, the runtime of SLiMBuild

was increased by approx 25% from 54 seconds to 68 seconds.

Example application 1: 14-3-3 interaction datasets
SLiMFinder performs with reasonable success on the ELM test

data but it is of interest to see how it performs in what could be

considered the more challenging case of real, often noisy, datasets.

Two of the ELM datasets that ‘‘failed’’ were 14-3-3 ligand

datasets. This failure could largely be attributed to the small

dataset sizes of the test sets, with only 3 unrelated proteins for

LIG_14-3-3_1 and 6 unrelated proteins for LIG_14-3-3_3.

Increasing the dataset size, even if this introduces some ‘‘noisy’’

sequences that do not contain the motif, can allow such a motif to
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be returned. Furthermore, the ELM LIG_14-3-3_2 was not

included in the test dataset due to the small number of annotated

occurrences on the ELM website.

We therefore sought to find 14-3-3 ligand motifs in the larger,

but noisier, data available in the HPRD database [15]. Humans

have seven 14-3-3 isoforms, each with interaction data available in

HPRD. SLiMFinder was run on each dataset and motifs with at

least three unrelated occurrences and significance of 0.05 or less

returned (Table 2). Regions predicted to be ordered with IUPred

[11] were masked out. Consistent with the predicted high

stringency of SLiMFinder, two of the datasets yielded no

significant results. Of those that did, three returned 14-3-3-like

motifs (R..S.P.L, GR.[ST]..P and FR..[ST].S). Furthermore, two

datasets returned probable SH3-binding P..P motifs. Two datasets

returned N-terminal motifs, which may represent common N-

terminal target peptide signals rather than ligand-binding motifs.

Only two additional motifs were returned, KE..K and Y.C.PG.L,

neither of which are known SLiMs. These motifs may represent

novel findings relating to 14-3-3 binding or function, although

given the low significance of these motifs (0.01,p,0.05) we

cannot rule out the possibility that they are false positives.

Example application 2: Endoplasmic reticulum

membrane targeting signals
In addition to the TRG_ER_KDEL_1 motif, ELM contains two

more endoplasmic reticulum targeting SLiMs, both of which also

lie at/near the termini of ER membrane proteins: TRG_ER_

diArg_1 (^M[DAL][VNI]R[RK] or ^M[HL]RR) and

TRG_ER_diLys_1 (K.{0,1}K.{2,3}$)[4]. The KDEL motif, in

contrast, is found in soluble proteins [4]. We took the Gene

Ontology cellular component category that identified endoplasmic

reticulum proteins (GO:0005783 ‘‘endoplasmic reticulum’’) and

extracted all sequences matching this categories from six

taxonomically diverse EnsEMBL genomes (C elegans, Chicken,

Drosophila, Human, Yeast and Zebrafish) [12]. SLiMFinder was

run on each dataset and motifs with a significance of 0.05 or less

returned. To enrich for targeting SLiMs, we restricted analysis to

the 20 amino acids at each terminus. The TRG_ER_KDEL_1

motif was returned by five out of six datasets, while the

TRG_ER_diLys_1 motif was returned by three (Table 3). The

TRG_ER_diArg_1 motif was not returned. On closer inspection,

this motif occurs few or no times in each dataset. In addition to

these known motifs, a number of novel motifs were returned. The

most interesting of these were the L.FL.{0,1}L and, overlapping,

[FV].L.L motifs, which were found in five out of six C. elegans UPC

and were the only significant motifs returned from this dataset.

The top-ranked motif for the human dataset was ^.A..G, which

occurred in 28 unrelated proteins. This is the result of an over-

representation of alanine at the second position in these proteins,

which may be indicative of a shared N-terminal target peptide

sequence.

Example application 3: HBV phage display
Hepatitus B virus (HBV) is thought to infect human hepatocytes via

attachment of the viral envelope protein’s PreS domain with

a specific cell surface receptor, the identity of which is unknown [16].

Deng et al. sought to identify novel binding partners of the PreS

domain using phage display. From a random phage display library of

12mer peptides, they isolated 13 phages with specific PreS-binding

activity, which in turn represented nine different peptide sequences.

The authors noted a high frequency of tryptophan residues and

manually determined a putative consensus sequence of WT.WW

from a multiple sequence alignment of the peptides. This sequence

was itself able to bind HBV particles. By searching candidate

interactors with a slightly degenerate [FW]T.W[FW] motif (using

BLAST), Deng et al. successfully identified a novel receptor protein,

lipoprotein lipase (LPL), which also bound HBV.

This work is an excellent example of how phage display can be

used to identify a novel SLiM mediating a protein-protein

interaction. However, given the short length of phage display

peptides, using multiple sequence alignment to identify the shared

motif(s) is not ideal and an alignment-free method may be less

susceptible to bias. In addition to potential alignment errors,

choice of consensus is a subjective human decision. We applied

SLiMFinder to the nine 12mer peptides that bound PreS. Using

amino acid frequencies from the input dataset, unsurprisingly,

returned no significant motifs. This is because the dominating

tryptophans are so prevalent that they make tryptophan-contain-

ing motifs statistically highly probable. The reality, however, is

that these peptides were selected from a population of sequences

with a very different amino acid composition. We therefore

replaced the dataset amino acid frequencies with amino acid

Table 2. SLiMFinder results for 14-3-3 interaction datasets
from HRPD.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Isoforma Nb Patternc Coveraged

Beta/Alpha (YWHAB) 220 (55) -

Epsilon (YWHAE) 117 (34) R..S.P..L * 40.0%

Eta (YWHAH) 83 (27) GR.[ST]..P * 37.0%

Gamma (YHWAG) 383 (101) ^.[AS][AGS] *** 40.6%

KE..K * 35.6%

Sigma (SFN) 48 (21) - 0.0%

Theta/Tau (YWHAQ) 132 (42) P..P..P * 66.7%

Zeta/Delta (YWHAZ) 190 (58) [AGS]..P..P..P *** 48.3%

^.[AGS][GS] ** 27.6%

FR..[ST].S ** 19.0%

[ST]P.[ST]P * 34.5%

Y.C.PG.L * 6.9%

a14-3-3 isoform. HGNC gene symbol given in brackets.
bNumber of proteins in dataset. Number of UPC is given in brackets.
cThe most significant motif of each ‘‘cloud’’ returned by SLiMFinder.
*p,0.05, **p,0.01, ***p,0.001.
dThe percentage of the dataset’s UPC covered by occurrences of returned

motifs in the same motif cloud.
doi:10.1371/journal.pone.0000967.t002..
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Table 3. Results of SLiMFinder analysis performed on human
and yeast ER proteins.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species Na Top Rankb diArgb diLysb KDELb

C. elegans 10 (6) L.FL.{0,1}L ** - - -

Chicken 40 (30) DEL$ * - - DEL$ *

Drosophila 168 (69) [HK].EL$ *** - [KR]K..$ * [HK].EL$ ***

Human 618 (346) ^.A..G *** - KK..$ *** DEL$ ***

Yeast 318 (249) HDEL$ *** - KK.N$ *** HDEL$ ***

Zebrafish 76 (42) [HK].EL$ *** - - [HK].EL$ ***

aNumber of proteins in dataset. Number of UPC is given in brackets.
bThe most significant motif returned by SLiMFinder.
*p,0.05, **p,0.01, ***p,0.001.
cThe most significant motif returned by SLiMFinder that matched the known ER
ELMs. KDEL = LIG_ER_KDEL_1; diLys = LIG_ER_diLys_1

doi:10.1371/journal.pone.0000967.t003..
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frequencies derived from the whole human genome. As expected,

all significant motifs featured tryptophan, with the top ranked

motif, W.{0,2}W being highly significant (p = 8.2610215). A three

amino acid variant, W.{0,2}WW, which is similar but subtly

different to the consensus of Deng et al., was also significant

(p = 1.561026). In the active LPL protein, it is this W..WW motif

that is conserved, while the consensus ‘‘T’’ is not a threonine in

LPL [16]. The manually generated WT.WW motif was not

significantly over-represented (p = 1.00). The degenerate

[FW]T.W[FW] motif is significantly over-represented (p = 0.016)

but was not returned as the appropriate component variants do

not each occur in two or more sequences.

Although no common motifs have been found to date, we also

investigated the possibility that proteins previously reported to

bind the key region of PreS shared motifs with the phage display

peptides. Interleukin 6 [17] and Serpin B3 (also known as

Squamous cell carcinoma antigen 1) [18] were therefore added to

the peptide sequences and SLiMFinder re-run and results analysed

for motifs occurring in at least one of the full-length human

proteins. The third-ranked motif, [FW]W (p = 5.361027) was

found in Serpin B3. This motif was also returned third from the

peptides alone. This motif occurred in seven of the nine peptides,

Serpin B3 and the LPL protein. A common mode of action for

PreS-binding of Serpin B3 and LPL cannot be ruled out,

therefore. The [FW]W is highly conserved in both Serpin B3

and LPL orthologues (data not shown), although the significance

of this is limited unless HBV is shown to infect other species via

a similar mechanism.

In this example, the motif was so striking that, in reality, use of

SLiMFinder did not add much value to the manual interpretation,

except for a degree of statistical support for identified motif. In

other situations, however, we can envisage the impact being much

more significant. If the motif is more cryptic, then alignment-based

manual inspection is much less likely to succeed. Perhaps more

importantly, use of SLiMFinder in this context produces repeat-

able results and is therefore suitable for being scaled up to analyse

and compare multiple datasets in a more objective fashion.

Conclusion
The full potential of SLiMs, both as explanations for biological

phenomena and as experimental tools in molecular biology, is only

just being unlocked [1]. To meet this potential, there is

a requirement for both improvements in technologies to identify

protein-protein ligand interactions and in the methods to identify

SLiMs from the results of these technologies. Existing methods can

be effective but suffer from low specificity of predictions, which can

reduce the willingness of experimental biologists to act on the

results. SLiMFinder is a novel algorithm building on, and

extending from, the approaches of SLiMDisc [8] and DILIMOT

[7] to improve both the nature of the motifs returned and

confidence in the predictions. SLiMBuild improves the type of

motif returned through improved incorporation of ambiguity,

introduction of flexible-length wildcard ‘‘gaps’’ and more control

over the composition and length of motifs. The SLiMBuild

approach has a number of advantages for SLiM discovery over

TEIRESIAS [9] and would therefore make a worthwhile re-

placement of TEIRESIAS for other SLiM discovery methods,

such as DILIMOT [7] or SLiMDisc [8]. Furthermore, the way

that motifs are assembled by SLiMBuild makes it possible to make

accurate estimates of the motif-space searched. SLiMChance takes

advantage of this feature of SLiMBuild to combine accurate

predictions with high stringency. This is the first practical

application in this area that attempts to calculate a relevant

significance value, and while the calculation is approximate, it

provides a more useful guide for high-throughput analyses of many

datasets. As the experimental techniques improve, and are applied

more widely, it is hoped that the data available for SLiM detection

will further increase the ability to identify new SLiMs with high

reliability. Further refinements of the statistics will in turn give

experimental biologists more faith in the results, encouraging more

generation of high quality datasets specifically for motif discovery,

such as the use of phage display peptides [16] and large scale

interactome motif studies [5].

SUPPORTING INFORMATION

Figure S1 Anatomy of a SLiM. Definitions of different

properties of SLiM have been marked on the example ELM,

LIG_CYCLIN_1. This motif has three defined positions (one fixed

and two degenerate) and two wildcard spacers (one fixed, one

flexible-length) for a total length of 4-5aa.

Found at: doi:10.1371/journal.pone.0000967.s001 (0.12 MB TIF)

Figure S2 SLiMFinder runtimes. A. SLiMFinder runtimes

against dataset size. As expected, SLiMFinder takes longer to

run with increasing dataset size. However, for typical dataset sizes

of up to 100 proteins, runtimes remain short enough to make high

throughput analyses feasible, even on a single processor. B.

SLiMBuild run-times compared to TEIRESIAS runtimes for 12

proteins that interact with AAA domain-containing proteins from

HPRD. Each dataset contains one or more related proteins from

the ATP-binding cassette (ABC) family of proteins plus a number

of unrelated proteins to make the total twelve. As the number of

relationships increases, so the TEIRESIAS (square, dotted lines)

runtime increases due to all the shared patterns between related

sequences. SLiMBuild (triangles, solid lines), in contrast, ignores

these patterns and so runtimes remain reasonably constant.

Found at: doi:10.1371/journal.pone.0000967.s002 (0.90 MB TIF)

ACKNOWLEDGMENTS
The authors would like to thank Michael Lidschreiber, Tiberiu Simu and

Ravindra Pushker for helpful comments during development of the

software.

Author Contributions

Conceived and designed the experiments: RE. Performed the experiments:

RE. Analyzed the data: RE. Wrote the paper: DS RE. Other: Assisted in

algorithm development: ND.

REFERENCES
1. Neduva V, Russell RB (2006) Peptides mediating interaction networks: new

leads at last. Curr Opin Biotechnol 17: 465–471.

2. Ceol A, Chatr-Aryamontri A, Santonico E, Sacco R, Castagnoli L, et al. (2006)

DOMINO: a database of domain-peptide interactions. Nucleic Acids Res 29: 29.

3. Songyang Z, Cantley LC (1995) SH2 domain specificity determination using

oriented phosphopeptide library. Methods Enzymol 254: 523–535.

4. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, et

al. (2003) ELM server: A new resource for investigating short functional sites in

modular eukaryotic proteins. Nucleic Acids Res 31: 3625–3630.

5. Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, et al. (2005)

Systematic discovery of new recognition peptides mediating protein interaction

networks. PLoS Biol 3: e405.

Protein Motif Discovery

PLoS ONE | www.plosone.org 10 October 2007 | Issue 10 | e967



6. Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches.

FEBS Lett 579: 3342–3345 Epub 2005 Apr 3318.
7. Neduva V, Russell RB (2006) DILIMOT: discovery of linear motifs in proteins.

Nucleic Acids Res 34: W350–355.

8. Davey NE, Shields DC, Edwards RJ (2006) SLiMDisc: short, linear motif
discovery, correcting for common evolutionary descent. Nucleic Acids Res 34:

3546–3554.
9. Rigoutsos I, Floratos A (1998) Combinatorial pattern discovery in biological

sequences: The TEIRESIAS algorithm. Bioinformatics 14: 55–67.

10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. J Mol Biol 215: 403–410.

11. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the
prediction of intrinsically unstructured regions of proteins based on estimated

energy content. Bioinformatics 21: 3433–3434.
12. Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, et al. (2006) Ensembl

2006. Nucleic Acids Res 34: D556–561.

13. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, et al. (2005) The

Universal Protein Resource (UniProt). Nucleic Acids Res 33: D154–159.
14. Balla S, Thapar V, Verma S, Luong T, Faghri T, et al. (2006) Minimotif Miner:

a tool for investigating protein function. Nat Methods 3: 175–177.

15. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, et al. (2006)
Human protein reference database–2006 update. Nucleic Acids Res 34:

D411–414.
16. Deng Q, Zhai JW, Michel ML, Zhang J, Qin J, et al. (2007) Identification and

characterization of peptides that interact with hepatitis B virus via the putative

receptor binding site. J Virol 81: 4244–4254 Epub 2006 Dec 4227.
17. Neurath AR, Strick N, Sproul P (1992) Search for hepatitis B virus cell receptors

reveals binding sites for interleukin 6 on the virus envelope protein. J Exp Med
175: 461–469.

18. De Falco S, Ruvoletto MG, Verdoliva A, Ruvo M, Raucci A, et al. (2001)
Cloning and expression of a novel hepatitis B virus-binding protein from HepG2

cells. J Biol Chem 276: 36613–36623 Epub 32001 Jun 36611.

Protein Motif Discovery

PLoS ONE | www.plosone.org 11 October 2007 | Issue 10 | e967


