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Sequences of human proteins are frequently prepared as synthetic oligopeptides to assess their functional
ability to act as compounds modulating pathways involving the parent protein. Our objective was to analyze
a set of oligopeptides, to determine if their solubility or activity correlated with features of their primary
sequence, or with features of properties inferred from three-dimensional structural models derived by
conformational searches. We generated a conformational database for a set of 78 oligopeptides, derived
from human proteins, and correlated their 3D structures with solubility and biological assay activity (as
measured by platelet activation and inhibition). Parameters of these conformers (frequency of coil, frequency
of turns, the degree of packing, and the energy) did not correlate with solubility, which was instead partly
predicted by two measures obtained from primary sequence analysis, that is, the hydrophobic moment and
the number of charges. The platelet activity of peptides was correlated with a parameter derived from the
structural modeling; this was the second virial coefficient (a measure of the tendency for a structure to
autoaggregate). This could be explained by an excess among the active peptides of those which had either
a large number of positive charges or in some cases a large number of negative charges, with a corresponding
deficit of peptides with a mixture of negative and positive charges. We subsequently determined that a
panel of 523 commercially available (and biologically active) peptides shared this elevation of absolute net
charge: there were significantly lower frequencies of peptides of mixed charges compared to expectations.
We conclude that the design of biologically active peptides should consider favoring those with a higher
absolute net charge.

INTRODUCTION

The biological functions of a protein or peptide are often
intimately dependent upon the conformations that the
molecule can adopt. With the development of quantum
chemical and molecular mechanical methods, theoretical
modeling is possible. While the quantum chemical methods
are too computationally intensive to explore a system with
more than 100 atoms,1 the use of stochastic conformational
searches involving molecular mechanical principles is a
viable alternative method to scan the conformational space
of oligopeptides and explore the mechanism of their biologi-
cal action.2 Oligopeptides are frequently synthesized, and
their biological activity is assessed. There are a number of
interesting but difficult questions that arise in relation to the
structures that such peptides adopt. First, the structure may
influence solubility, affecting whether the peptide can be
easily used in practice.3,4 Second, the conformations that the
peptide is free to adopt may well influence the peptide’s
biological activity. However, short peptides are likely to be
extremely dynamic in solution. Linear oligopeptides represent

a transient, globule-like structure which is considered to be
an ensemble of interconverting populations of random coil
and other conformational possibilities.5 Therefore, it is
unclear whether the set of conformers found by theoretical
modeling will bear any relation to the main conformations
adopted in reality. Clearly, even if the conformation obtained
reflected the true conformation of the oligopeptide in
solution, there remains the additional issue that this confor-
mation may not reflect the conformation adopted in interac-
tion with its ligand. Nevertheless, given the limited under-
standing of rules that may be usefully applied in designing
oligopeptides that will be both soluble and active, we set
out to determine if structural modeling provided any ad-
ditional information regarding the solubility and activity, over
and above that provided by predictions from primary amino
acid sequences. We investigated a panel of oligopeptides for
which we had information on the ease of solubilization and
information on biological activity. They were modeled on
the cytoplasmic regions of transmembrane proteins and were
identified from an evolutionary sequence analysis of speci-
ficity-determining and conserved residues.6 Because bioactive
peptide motifs are often in disordered regions of protein
surfaces,7-10 it is of interest to investigate whether disorder-
related aspects of oligopeptide structure might be associated
with activity. The peptides we investigated here were
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palmitylated to facilitate membrane association. Circular
dichroism analyses of oligopeptides reveal that they can adopt
helical structures,11-15 and NMR analyses of palmitylated
peptides reveal that palmitylation induced helicity in the
juxtamembrane portion of the peptide.16

Our objective was to determine whether computational
structural modeling of oligopeptide conformers provided
information regarding tertiary structure (over and above that
suggested by computational methods using the primary
sequence alone) that correlated with the solubility and activity
of the oligopeptides. We also wished to determine if the
property of such conformers to solubilize (as determined by
second virial coefficient,B22

17) had any impact on the
experimentally determined features of the peptides. The goal
was to determine if any parameters, inferred from the best
conformers or from the population of conformers for each
peptide, would aid in the future design of novel oligopeptides
with good properties of solubility and activity. Typically,
such automatically generated conformer models are unlikely
to be individually highly reliable but could have the capacity
to identify overall trends that would give us clues about the
structural constraints on solubility and activity. In addition
to investigating parameters derived from the inferred 3D
conformers, we also investigated a number of simpler
parameters estimated from the primary sequences or from
alignments of the primary sequences with biologically
homologous sequences.

METHODOLOGY

Structural Features Derived from Conformational
Modeling. Two approaches to modeling were considered,
because the experimental evaluation of the peptide solubility
and activity had been carried out on N-terminally palmity-
lated forms of 78 decameric peptides. The choice of the
peptides followed a rationale described elsewhere.6 In the
first (“native peptide”) model, the peptides were modeled
as a simple decamer without any modification of N and C
termini. The second model was closer to the states of the
actual peptides, with C-amidation (corresponding to the
experimental modification of the C terminus) and N-
acetylation. N-acetylation is an approximation of the true
experimental modification of the N terminus, which com-
prised an N-palmitylated group. While this model may not
accurately reflect the true structure, the palmityl group is
likely to be membrane-associated in functional assays and,
therefore, cannot be accurately modeled in an aqueous force
field. For the purposes of the analyses here, we are most
interested in differences among peptides, so that even though
the conditions of the modeling may not be entirely realistic,
broad trends that emerge may well be relevant to the
biological situation. Considering the differences within and
between the “native” and “terminally modified” models
permitted some consideration of the extent to which modi-
fication of the modeling parameters alters the general
conclusions made. The conformational library of the two sets
of peptides (the first set consisting of the native 10-mer
sequences and the second set consisting of theN-acetylated
and C-amidated 10-mer sequences) was created using the
stochastic conformational search method available in the
Molecular Operating Environment software (MOE).18 In
stochastic searches, new molecular conformations are gener-

ated by random rotation of the bonds. In the calculations, a
bias of ∼30° was selected, so that dihedral angles were
rotated by a random angle with a sum-of-Gaussians distribu-
tion with peaks at multiples of 30°. To make the search even
more efficient, a simultaneous Cartesian perturbation of
0.0001 Å was also applied. The structures were subsequently
optimized using the AMBER94 force field19,20 employing
Born continuum solvation model21-23 as implemented in
MOE. Each resulting conformation had been checked to
determine if it had already been generated by comparing all
atom positions using a predefined root-mean-square (RMS)
tolerance (0.01 in this work). Conformations with energies
> 100 kcal mol-1 above the respective minima were rejected.
The minimum energy for each conformer was compared to
an expectation derived from the energies for the 10 amino
acids in the same force field minus the energy of nine water
molecules eliminated during decamer formation, and the
difference in energy (∆E) was calculated as the difference
between the expected value and the actual value obtained
for the best conformer of the peptide.

The secondary structures of the peptide conformers
obtained were calculated by the DSSP algorithm.24 In a
polypeptide, the main chain N-CR and CR-C bonds are
relatively free to rotate. These rotations are represented by
the torsion anglesφ andψ, respectively. Theφ andψ values
for the peptide conformers were obtained using the RASTOP
package.25 On the basis of theφ andψ values of each residue
in the peptide conformers, the possible regions (favored,
allowed, and disallowed) they span in the Ramachandran
conformational map were identified. As a measure of how
extended or compacted a given peptide structure might be,
we defined the packing average as the mean pairwise distance
in angstroms between each amino acid of the individual 10-
mer peptides:

wherex, y, andz are the coordinates of the CR atoms. From
the individual packing average for each of the conformers
of a peptide, the mean and standard deviation values were
calculated. Among the peptides taken for this investigation,
there are 26 pairs of peptides derived from alignable
membrane-proximal regions of evolutionary-related trans-
membrane proteins (BLASTE value< 1 × 10-12). The 10-
mer aligned peptide pairs had a mean percentage identity of
49% (standard deviation, SD, 20%). For these 26 pairs, the
RMS deviation (RMSD) for the backbone was calculated26

for the best conformer of the first peptide, compared to the
conformer in the top 10 conformers of the second peptide
with the most similar RMSD.

Method for Calculating the Second Virial Coefficient
(B22). The second virial coefficients were calculated from
the interaction energy between two molecules of the same
peptide using the McMillan-Mayer result27

whereMw is the molecular weight,w is the potential of mean
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force28 acting between two peptide molecules in solution,k
is the Boltzmann constant,T is the absolute temperature, and
Ω indicates that the integration is carried out over all possible
relative positions and orientations of the two molecules. The
relative position of the two molecules is described using the
spherical coordinates (r,θ,φ), and the relative orientation is
described using the Euler angles (R,â,γ) giving a total of
six dimensions. In practice, however, it is not possible to
calculate the interaction energy for all possible relative
orientations and positions of the two molecules. Instead, the
interaction energy is calculated on four predefined grids as
listed in Table 1.

Each domain spans fromrmin to rmax in the r dimension
that represents the molecular center-center distance. In each
domain, the spacing between the grid points in ther
dimension is given byrstep and by∆angle in the remaining
five angular dimensions (θ, φ, R, â, andγ). The calculations
are divided in ther dimension into four domains, allowing
a different grid resolution in each domain. In the first domain
(defined as all interactions for which the molecular center-
center distance is less than 5 Å and where overlap between
the peptide molecules therefore always occurs), the distance
between grid points is 1 Å in ther dimension and 45° in
each of the five remaining angular dimensions. This gives a
total of 64 000{5[(360/45)]3[(180/45)+ 1]2} grid points. In
the second domain where the molecular center-center
distance is in an interval [5-30 Å], all of the close
interactions between the molecules are expected to happen,
and hence, a high-resolution grid of a total of 48 400 000
grid points was applied. At larger molecular center-center
distances (domains 3 and 4), a lower grid resolution is used
as the interactions here are predicted to be long-range in
nature and less dependent on the precise molecular positions.
The interaction energy,w, was calculated for each of the
grid points on the six-dimensional grid using the termsw )
wsteric + wnonelectrostatic+ welectrostatic. The steric interaction
energy was only applied when the peptides were overlapping
as wsteric ) ∞, and otherwise,wsteric ) 0. The electrostatic
term of the interaction energy was modeled using the
linearized Poisson-Boltzmann equation

where ε is the relative permittivity,φ is the electrostatic
potential,κ is the Debye-Hückel parameter, andF is the
charge distribution of the peptide. The relative permittivity
was set to 3 in the interior of the peptide and 78.4 outside
the peptide. The partial charge for each atom was assigned
using the AMBER force field parameter set for proteins and
nucleic acids.29 Protonation states were set according to
standard pKa values of free amino acids. The electrostatic
potential around each peptide was found by solving the
Poisson-Boltzmann equation using a finite difference
method.30 The electrostatic potential around the peptide was

found on a Cartesian grid consisting of 256× 256 × 256
grid points separated by 1 Å. The electrostatic potential at a
given point in space outside the peptide is then found by
linear interpolation between the calculated points. The
electrostatic interaction energy can then simply be found by
multiplying the partial charge of each atom with the
electrostatic potential at its position and summed up over
all atoms. The nonelectrostatic interactions were modeled
using a hybrid potential.31 For interactions with a center-
center distance of less than 6 Å, the Lennard-Jones potential
was used, while interactions with greater separations were
calculated using the Hamaker potential. The Lennard-Jones
potential was calculated using parameters from the AMBER
force field parameter.29 The Hamaker potential was calculated
using a theoretical Hamaker constant of 3.1kTcorresponding
to protein-water-protein interactions32 and using molecular
group volumes.33 All of the calculated interaction energies
were integrated as described by the McMillan-Mayer result
to evaluate the second virial coefficient. First, the interaction
energies were integrated in ther dimension using Simpson’s
rule, leaving five remaining dimensions to integrate. These
remaining dimensions were integrated using Monte Carlo
integration34 by generating random points in the five-
dimensional subspace and estimating the interaction energy
at these points by linearly interpolating between the calcu-
lated interaction energies for the predefined grid points.

Structural Features Predicted from Primary Amino
Acid Sequence.A variety of predicted features that might
relate to peptide solubility and activity were estimated to
compare alongside the structural predictions with solubility
and activity of the peptides. The molecular weight, instability
index, GRAVY, hydrophobicity score, theoretical pI, and
aliphatic index of the peptides were calculated using
EMBOSS.35 The helical hydrophobic moment values for the
peptides were calculated using the HMOMENT server.36

Because antimicrobial peptides may disrupt membranes, we
calculated measures related to the potential similarity to such
peptides. The total hydrophobic ratio, total net charge, and
Boman index37 for the peptides were calculated using the
antimicrobial peptide prediction server. Short signaling motifs
often occur in disordered regions of peptides,10 and therefore,
we calculated a number of predictions of disorder, from the
IUPRED,38 DisEMBL,39 and GLOBPLOT 2.140 servers.
Functional motifs present in the peptides were analyzed using
the ELM,41 Scansite,42 and Automotif43 servers. The various
secondary structural elements present in the peptides were
predicted from the primary sequences, using the PSIPRED44

(R-helix, â-sheet and coil), BTSVM45,46(â-turn), and BHAIR-
PRED47(â-hairpin) servers. The antigenic sites48 overlapping
the peptide sequences were predicted using the antigenic site
prediction server. The helical content of the peptides was
predicted using the AGADIR server.11-15

Comparison with Solubility and Activity. The activity
data for the peptides is described in detail elsewhere.6 Briefly,
four different assays of platelet function (aggregation, ADP
release, inhibition of thrombin-induced aggregation, and
inhibition of thrombin-induced ADP release) were measured.
p values from all four functional assays were obtained.
“Activity” was defined as 1 if one of the four assays showed
a significant effect for the peptide (p < 0.05); otherwise, it
was defined as 0. The variable “solubility” was defined as a
simple three-point scale, depending on whether they were

Table 1. List of Predefined Grids and Number of Grid Points Used
in the Calculations

domain rmin [Å] rmax [Å] rstep[Å] ∆angle [deg] calculations

1 0 5 1 45 64 000
2 5 30 0.5 18 48 400 000
3 30 50 0.5 30 3 386 880
4 50 100 2 45 320 000

in total 52 170 880

∇ε( rb) ∇φ( rb) - κb2
φ( rb) + 4πF( rb) ) 0

CHARGE AND BIOLOGICAL ACTIVITY OF OLIGOPEPTIDES J. Chem. Inf. Model., Vol. 46, No. 5, 20062185



soluble in water (solubility of 1), whether MeOH was
required to be added in order to achieve solubility (solubility
of 2), and whether some DMSO was required to be added
in order to achieve solubility (solubility of 3), with up to
100% DMSO being required for a number of peptides. The
statistical analyses of the data were carried out with the
STATA 8.0 package.49

RESULTS AND DISCUSSION

About 60% of modeled nonglycine residues fall outside
the φ andψ bond angles normally permitted in proteins.50

Thus, the opportunity to adopt conventionalR-helical
structures is limited, and therefore, the proportion of peptide
residues predicted by the 3D conformers to be in anR-helical
conformation is very low (Table 2). The DSSP algorithm is
able to make strong assignments that 36% of the residues
are likely to be random coils [dssp(s)] but can only assign
around 6% to hydrogen-bonded turns [dssp(t)]. The occur-
rence of so many illegal bond angles suggests that many of
the conformations adopted may not represent well the true
peptide conformations and reduces the power of DSSP to
assign reasonable estimates of secondary structure. Bearing
this in mind, we considered the overall trends across the data
set.

The conformational features of the proline (Pro) rings in
the Pro-containing peptides were analyzed on the basis of
the endocyclic torsion angles. Two native peptides had one
of the proline rings in them in a planar conformation, whereas
others have the Pro rings in either up or down puckered

conformations.51 However, in most of the peptides, the
conformation of the Pro rings differs between the native and
modified peptides. This indicates that the proline conforma-
tions adopted are sensitive to the modifications at the N and
C termini.

The 78 peptides fall largely into two groups: those where
∆E is negative, and where typically there are many alterna-
tive conformations possible, and those where it is positive
and there are far fewer conformations. Table 3 indicates that
there is a strong correlation of both the number of conformers
and∆E with the packing average, indicating that the peptides
with more conformers have more extended structures; their
conformations obtained may then be close to stochastic and
may reflect greater fluidity of such peptides in solution.∆E
was strongly correlated with four parameters determined from
the primary sequence, namely, the total net charge, Boman
index, theoretical pI, and molecular weight (Table 3).

Correlations of Structural and Sequence Features with
Solubility. It might have been predicted that more extended
peptides should be more soluble, but we found that∆E or
packing were not correlated with solubility (Table 4). The
B22 parameter did not correlate with the solubility of these
short peptides (Table 4), despite being a good predictor of
solubility for larger proteins.52-54 The modeling of such
higher-order structures is currently infeasible. What then
accounts for the difference? It may be that substantial
aggregates of a fairly large number of oligopeptides remain
highly soluble, so long as the surface charge of the aggregate
remains high. It is possible that the calculation ofB22 is prone

Table 2. Fraction of Residues Classified into Secondary Structural States

native peptides modified peptides

secondary structure statesa definition meanb best conformerc meanb best conformerc

dssp(s) random coils 0.35593 0.37948 0.35940 0.36923
dssp(t) hydrogen-bonded turns 0.05841 0.06538 0.05114 0.06538
dssp(g) 310-helix 0.00317 0.00384 0.00317 0.00384
dssp(b) residue in isolatedâ bridge 0.00039 0.00000 0.00086 0.00000
dssp(h) R-helix 0.00003 0.00000 0.00027 0.02051
dssp(e) extended strand 0.00000 0.00000 0.00002 0.00000
dssp(i) π-helix 0.00129 0.00000 0.00004 0.00000

a As estimated by DSSP program.b Fraction for the peptide over all the conformers averaged over all the peptides.c Fraction for the best conformer
of the peptide averaged over all the peptides.

Table 3. Spearman Correlation Coefficients among Pairs of Structural- and Sequence-Derived Variables

variables
number of
conformers ∆E

dssp(s)
random coil

dssp(t)
H-bonded turn pack (mean)

SD of pack
(mean) B22

3D-Structural Variablesa,b

∆E -0.408 +0.321
dssp(s) -0.503
dssp(t) +0.492 -0.578
pack (mean) +0.578 -0.367 -0.601 +0.367
SD for pack (mean) +0.902 -0.375 -0.472 +0.502 +0.568
dssp(h) +0.786 -0.383 -0.547 +0.566 +0.572 +0.707
dssp(b) +0.792 -0.394 -0.520 +0.605 +0.545 +0.702
dssp(e) +0.491 -0.432 +0.417 +0.368 +0.438
dssp(i) +0.619 -0.459 +0.461 +0.400 +0.500

Variables Based on Peptide Sequencesb

absolute net charge +0.471 +0.854
Boman index +0.348
theoretical pI +0.575 +0.605
mol. weight +0.460

a N-acetylated and C-amidated model. Similar correlation values are found for the native peptides (data not shown).b Only correlation coefficients
with P e 0.005 andF g 0.300 are presented.
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to error, assuming the conformational model selected.
However, we noted thatB22 is strongly correlated with the
absolute net charge (SpearmanF ) 0.85 andP ) 0.00) across
the peptide data set (i.e.,B22 is high for both those with a
large number of positive and a large number of negative
charges). Solubility showed a lack of correlation with either
B22 (p ) 0.18) or the absolute net charge (p ) 0.81). Because
it would be anticipated that peptides of mixed charge should
associate more easily than those with a large absolute net
charge, we conclude that the lack of association of solubility
with eitherB22 or absolute net charge is unlikely to merely
reflect problems with the computation ofB22.

The impact of features predicted from the primary
sequences on solubility was assessed by a stepwise regression
of the non-3D structural variables (ranked where appropriate)
starting with a full model with all variables and then
successively eliminating the least significant terms, with a
threshold ofp ) 0.05. Only the hydrophobic moment and
the number of charge centers in the peptide were significant
independent predictors of increased solubility, with peptides
insoluble in the two protic solvents (water and MeOH)
having a low hydrophobic moment (Figure 1a). A strong
hydrophobic moment may also have the property that the
charge is distributed more evenly along the peptide, perhaps
improving the solubility. It is striking that peptides of
intermediate solubility (requiring MeOH to bring the peptide
into solution) generally are more hydrophobic but have a
higher hydrophobic moment than those that require DMSO
(Figure 1b-d). No significant correlation is observed be-
tween the various disorder prediction scores and the solubility
of the peptides.

The design of the peptides in this study included 26 pairs
of peptides derived from homologous regions of proteins.
This allows us to consider whether simple residue conserva-
tion or RMSD among models from pairs of evolutionarily
related peptides is a better predictor of similarities in
solubility. However, there was no correlation of RMSD with
vehicle similarity (F ) 0.00 andp ) 0.99). Those peptide
pairs with a strong residue identity tend more often to be
soluble in the same vehicle. This is confirmed by a significant
association (F ) 0.445 andp ) 0.03) between residue
identity and solubility. This is likely to simply reflect the
impact of residue composition on solubility, regardless of
the particular modeled conformation.

Correlations of Structural and Sequence Features with
Activity. ∆E and packing did not influence the activity
(Table 4). We noted that, when the analysis was restricted
to those peptides with a positive∆E, there were weak
correlations of activity with the energy of the best conformer.
While this is suggestive, the statistical significance was weak,
given the extent of multiple testing of alternative hypotheses.
Somewhat surprisingly, the structural parameterB22 was
correlated with activity (Table 4). A possible explanation is
that peptides with higherB22 values are less likely to form
larger aggregates, increasing their effective availability for
interaction with ligands.

To investigate whether this correlation ofB22 with activity
could be more simply represented in terms of sequence
characteristics, we considered the absolute net charge as a
predictor variable, becauseB22 is closely related to the
absolute net charge (i.e., molecules with a highB22 tend to
either have a large net positive charge or else a large net
negative charge). The parameters total net charge, theoretical
pI, absolute net charge, helical content (Agadir prediction),
and the rankedB22 (second virial coefficient) values for the
two sets of peptides had significant pairwise correlations with
activity (p < 0.008). However, stepwise regression indicated
that absolute net charge alone was the most significant
predictor, with the other variables not adding significantly
to this model. This trend is seen in peptides solubilized in
all three vehicles (Figure 2). We noted that the absolute net
charge came out as a significant predictor of activity
measured independently for each of the four individual assays
that comprised the composite activity variable. Clearly, the
potential absolute net charge is dependent to some extent
on the number of charged residues in a peptide. Figure 3
illustrates the wider spread among the active peptides of
absolute net charge for any given number of charge centers
in the peptide. Put simply, it appears that there is an excess
among active peptides of those with a larger number of
positive charges and those with a larger number of negative
charges. For example, those peptides with three charge
centers show a strong preference for three positive charges
among the active peptides, while peptides with two positive
and one negative charge predominate among the inactive
peptides. We would have anticipated that modeled conform-
ers of peptides with a high net absolute charge would tend
to have a more extended structure, because of the repulsive
forces separating these same charges, while those with a

Table 4. Spearman Pairwise Correlation of Activity and Solubility with 7 3D-Structural Variables

native modifieda

activityb solubilityc activityb solubility2

3D-structural variables F p F p F p F p

number of conformers +0.252 0.026 -0.057 0.6190 +0.089 0.439 +0.040 0.730
∆E +0.070 0.544 -0.067 0.5615 +0.070 0.544 -0.067 0.561
dssp(s) random coil -0.082 0.473 -0.002 0.9885 -0.113 0.323 -0.037 0.748
dssp(t) H-bonded turn +0.042 0.717 -0.199 0.0814 +0.000 1.000 +0.182 0.110
packing (mean) +0.041 0.722 +0.129 0.2598 +0.113 0.322 -0.047 0.680
SD for packing (mean) +0.181 0.112 +0.049 0.6690 +0.186 0.102 +0.038 0.739
packing (best conformer) -0.004 0.972 +0.091 0.4296 +0.153 0.182 -0.035 0.763
B22 +0.331 0.003 +0.022 0.8490 +0.300 0.008 +0.153 0.182

a N-acetylated and C-amidated.b Activity is defined as 1 if one of the four assays showed a significant effect for the peptide (p < 0.05), otherwise
it is defined as 0.c Solubility is defined as a simple three-point scale, depending on whether they were soluble in water (solubility of 1), whether
MeOH was required to be added in order to achieve solubility (solubility of 2), and whether some DMSO was required to be added in order to
achieve solubility (solubility of 3).
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mixture of charges might have a less extended structure,
owing to the electrostatic stabilization between a negative
and a positive charge. However, looking at peptides with
three charge centers, in each of the 11 where all three were

all positive (K or R), the∆E values were positive, whereas
the 13 peptides with a mixture of negative and positive
charges included five with negative∆E values. It is not clear
if this is a chance observation, if the implicit solvation in
the model is sufficient to overcome the stabilization of
peptides of mixed charge, or if the calculation of∆E tends
to lead to an excessive estimate in the case of the bulkier
positively charged amino acids.

Having established absolute net charge as a predictor
variable of activity in this data set of 78 peptides, we then
wished to determine if this is a general trend seen across
many kinds of oligopeptides or if this is a specific observation
to palmitylated peptides, or to peptides acting on platelet

Figure 1. Impact on solubility of hydrophobic moment and total
hydrophobic ratio. Hydrophobic moment is compared among
vehicles (a) and its distribution shown with that of the total
hydrophobic ratio for (b) water, (c) MeOH, and (d) DMSO.

Figure 2. Impact of absolute net charge on the platelet activity of
78 peptides.

Figure 3. Overdispersion of total net charge in active and inactive
platelet peptides (size of bubble is proportional to the number of
peptides).
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signaling. Because commercially available peptides are
usually experimentally active, we took a data set of 523
commercially available oligopeptides of length 7-16 (se-
quences obtained from the Web site of a commercial supplier,
the American Peptide Company: www.americanpeptide-
.com). We found a greater than expected frequency of
peptides with a high absolute net positive charge (Figure 4).
This effect was statistically significant for various numbers
of charges. Of peptides with two charges, 84 were both
positive, 21 both negative, and 56 had no net charge (Figure
4): this represented a significant departure from the binomial
expectations of 77.9, 14.8, and 68.2, respectively [p ) 0.02,
ø-square with 1 degree of freedom (d.f.)]. The same pattern
was seen in those with three charges, where observations of
4, 32, 21, and 25 were seen for-3, +3, -1, and +1,
respectively, compared to expectations of 2.7, 25.7,17.2, and
36.4 (p ) 0.05, 2 d.f.). A similar departure is seen for
peptides with four charge centers (p ) 0.03, 3 d.f.). For
peptides with greater numbers of charges, visual inspection
reveals a very similar excess of absolute net charge compared
to expectations (Figure 4). While a subset of the bioactive
peptides was known to have an excess of positive charge
that directly related to their membrane disrupting activity,55

these alone cannot account for the pattern seen in Figure 4.
No significant correlation is observed between the various
disorder prediction scores and the activity of the peptides.

Our analyses suggest that routine conformational modeling
during the selection of peptides is not proven to provide any
additional information that would help identify more soluble
or more active peptides. However, the structural modeling
led us to identify a simple correlation of absolute net charge
with activity that was not only true for our own data set but
also of relevance to a wider range of peptides. While the
second virial coefficient (B22) did not correlate as well in
our data set with activity as did the simple absolute net
charge, the models presented here of oligopeptides may only
represent an approximate sample of the population of the
conformers, given their great flexibility. It would be of
interest to repeat this analysis in a structurally more
constrained data set, of shorter or cyclized compounds. In
such a data set, where there is greater confidence in the
models, it will be easier to determine whether the second
virial coefficient contains additional information regarding
activity rather than simple absolute net charge. Our observa-
tion that the hydrophobic moment, as well as hydrophobicity,

appears to predict the solubility of peptides suggests that the
selection of soluble peptides for further studies should
consider not only hydrophobicity or number of charges but
also the distribution of charges and hydrophobicity along
the peptides. While absolute net charge is correlated with
bioactivity, we are somewhat surprised that it does not relate
to experimental ease of solvation in water. Perhaps this
indicates that, for oligopeptides, aggregates may often enter
solution as easily as monomers. The main conclusion of our
study is that the design of data sets of active peptides should
consider favoring those peptides with a high absolute net
charge. In combinatorial chemistry, this could be achieved
by combining peptide syntheses from two separate pools of
amino acids, one with an excess of negatively charged amino
acids and the other with an excess of positively charged
amino acids. In the design of biomimetic oligopeptides,
charged groups could be added to the ends or substituted in
the design. It will be very interesting to systematically
determine if such modifications to peptide design protocols
increase peptide bioactivity.
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